20 research outputs found

    Modeling Brain Resonance Phenomena Using a Neural Mass Model

    Get PDF
    Stimulation with rhythmic light flicker (photic driving) plays an important role in the diagnosis of schizophrenia, mood disorder, migraine, and epilepsy. In particular, the adjustment of spontaneous brain rhythms to the stimulus frequency (entrainment) is used to assess the functional flexibility of the brain. We aim to gain deeper understanding of the mechanisms underlying this technique and to predict the effects of stimulus frequency and intensity. For this purpose, a modified Jansen and Rit neural mass model (NMM) of a cortical circuit is used. This mean field model has been designed to strike a balance between mathematical simplicity and biological plausibility. We reproduced the entrainment phenomenon observed in EEG during a photic driving experiment. More generally, we demonstrate that such a single area model can already yield very complex dynamics, including chaos, for biologically plausible parameter ranges. We chart the entire parameter space by means of characteristic Lyapunov spectra and Kaplan-Yorke dimension as well as time series and power spectra. Rhythmic and chaotic brain states were found virtually next to each other, such that small parameter changes can give rise to switching from one to another. Strikingly, this characteristic pattern of unpredictability generated by the model was matched to the experimental data with reasonable accuracy. These findings confirm that the NMM is a useful model of brain dynamics during photic driving. In this context, it can be used to study the mechanisms of, for example, perception and epileptic seizure generation. In particular, it enabled us to make predictions regarding the stimulus amplitude in further experiments for improving the entrainment effect

    Acoustic Emission Monitoring of Leaks

    No full text

    Influence of Stance Width on Frontal Plane Postural Dynamics and Coordination in Human Balance Control

    No full text
    The influence of stance width on frontal plane postural dynamics and coordination in human bipedal stance was studied. We tested the hypothesis that when subjects adopt a narrow stance width, they will rely heavily on nonlinear control strategies and coordinated counter-phase upper and lower body motion to limit center-of-mass (CoM) deviations from upright; as stance increases, the use of these strategies will diminish. Freestanding frontal plane body sway was evoked through continuous pseudorandom rotations of the support surface on which subjects stood with various stimulus amplitudes. Subjects were either eyes open (EO) or closed (EC) and adopted various stance widths. Upper body, lower body, and CoM kinematics were summarized using root-mean-square and peak-to-peak measures, and dynamic behavior was characterized using frequency-response and impulse-response functions. In narrow stance, CoM frequency-response function gains were reduced with increasing stimulus amplitude and in EO compared with EC; in wide stance, gain reductions were much less pronounced. Results show that the narrow stance postural system is nonlinear across stimulus amplitude in both EO and EC conditions, whereas the wide stance postural system is more linear. The nonlinearity in narrow stance is likely caused by an amplitude-dependent sensory reweighting mechanism. Finally, lower body and upper body sway were approximately in-phase at low frequencies (<1 Hz) and out-of-phase at high frequencies (>1 Hz) across all stance widths, and results were therefore inconsistent with the hypothesis that subjects made greater use of coordinated counter-phase upper and lower body motion in narrow compared with wide stance conditions
    corecore